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a b s t r a c t

The problem of the stability of the motions of mechanical systems, described by non-linear non-
autonomous systems of ordinary differential equations, is considered. Using the logarithmic matrix norm
method, and constructing a reference system, the sufficient conditions for the asymptotic and exponen-
tial stability of unperturbed motion and for the stabilization of progammed motions of such systems are
obtained. The problem of the asymptotic stability of a non-conservative system with two degrees of free-
dom is solved, taking for parametric disturbances into account. Examples of the solution of the problem
of stabilizing programmed motions – for an inverted double pendulum and for a two-link manipulator
on a stationary base – are considered.

© 2008 Elsevier Ltd. All rights reserved.

1. Problem formulation

Suppose Rn is an n-dimensional real linear vector space with norm |·|, Rn×n is a linear, active, square-matrix space and I ∈ Rn×n is the
identity matrix.

Definition 1 (1). The operator norm ||A|| of matrix A ∈ Rn×n, subject to the vector norm |·|, is

Definition 2 (2). The logarithmic norm �(A) of the matrix A ∈ Rn×n is

Remark. The logarithmic norm of the matrix can take negative values and is not a matrix norm in the classic sense.

The operator norm of the fundamental matrix �(�, t) of solutions of the linear system

satisfies the inequality2

which enables us, using vector-norm-type Lyapunov functions, to construct the reference equations
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An analogous reference equation can be constructed by considering the problem of the stability of the zero solution for a non-linear
system:

where f(t, x) is a function that is continuous with respect to the set of arguments and continuously differentiable with respect to x. Denoting
by F(t, x) the Jacobi matrix of the function f(t, x), F(t, x)=∂f(t, x)/∂x, and choosing one of the vector norms as the Lyapunov function V, V = |x|,
we obtain a reference equation of the form

However, if the system has the form

then it is possible to construct a reference equation of the form

Consider the problem of the stability of the zero solution of the system

(1.1)

where A(t, x, y) and B(t, x) are n × n matrices with uniformly continuous constrained elements, where here the matrix B(t, x) is non-
degenerate, detB(t, x) ≥ d0 = const > 0.

By replacing the variables

we transform system (1.1) to the form

(1.2)

If, for system (1.2), we adopt a Lyapunov vector function of the form

where |·| is a certain vector norm, we can construct a generalized reference system consisting of Eq. (1.2) and the equations

(1.3)

where � is the logarithmic norm and ||·|| is the operator norm of the corresponding matrix.
Using the classic comparison method approach,3,4 from the properties of stability of the zero solution x1 = x2 = 0, u1 = u2 = 0 of reference

system (1.3) with respect to the variables u1 and u2 we can conclude that there is an analogous property of stability of the zero solution

(1.4)

of system (1.2). The limit equation method enables us, in a number of cases to reduce the requirements concerning the reference system
considerably: for example, for asymptotic stability of the zero solution of the system investigated it is not essential for the reference system
to have an asymptotically stable zero solution.5 On the basis of the principle of quasi-invariance of a positive limit set of perturbed motion,
the sufficient conditions for the asymptotic stability of unperturbed motion were obtained5 using of Lyapunov vector functions.

We will assume that, in relation to t, the right-hand side of system (1.2) uniformly satisfies the Lipschitz function with respect to (x1,
x2). Then, for system (1.2) we can construct the family of limit systems5

(1.5)

The asterisk denotes the limit function to the initial function.
We will consider the following problem: using the method of logarithmic matrix norms and results obtained earlier,5 it is required to

find the sufficient conditions for exponential and asymptotic stability of the zero solution of system (1.1).
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2. Principal theorems of asymptotic and exponential stability

For r = const > 0 or r = +∞, we will introduce the notation

Theorem 1. For exponential stability of the zero solution

(2.1)

of system (1.1), it is sufficient to have the constants k > 1, r > 0, c > 0, and L > 0 and the continuous function �: R+ → R, such that, for any t0 ≥ 0 and
for all t ≥ t0, the following inequalities are satisfied:

(2.2)

Proof. According to the second condition of system (2.2), the zero solution (1.4) of system (1.2) is uniformly stable. In fact, we will adopt
the Lyapunov function V = max{|x1|, k|x2|}. Then, calculating its derivative by virtue of system (1.2), we obtain the estimate

From this, for all t ≥ t0, t0 ≥ 0 we obtain the following inequality

The reference equation u̇ = M(ε(t))u will be uniformly stable according to the second condition of system (2.2), which means that the zero
solution (1.4) of system (1.2) will be uniformly stable.

We will prove that solution (1.4) of system (1.2) is exponentially stable.
Using the theorem of localization of a positive limit set,5 for solutions of the limit system (1.5) for all t ≥ 0 we will have5

Analysing this equation, we establish that there is an instant of time t1, t1 ≥ 0, such that

(2.3)

In fact, for solutions of limit system (1.5) we will have

(2.4)

since, in the opposite case, we will find that there is an instant t* ≥ 0 such that

and we arrive at the contradiction: M(�*(t*))<�*(t*).
From inequality (2.4) it follows that

and hence inequality (2.3) holds.
From inequality (2.3), for solutions of system (1.2) for all t ≥ t0 we will have

where

Thus, solution (1.4) of system (1.2) is exponentially stable. Hence, the zero solution (2.1) of system (1.1) is exponentially stable.
In the next theorem, uniform asymptotic stability of the zero solution of the initial system is achieved when the reference system is

stable (non-asymptotically).
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Theorem 2. Let |·| be a spherical norm and

(2.5)

Then, for uniform asymptotic stability of the zero solution (2.1) of system (1.1), it is sufficient for the conditions of the previous theorem to be
satisfied when k = 1.

Proof. From the conditions of the theorem it follows that the zero solution (1.4) of system (1.2) is uniformly stable. Hence, the zero
solution (2.1) of system (1.1) is uniformly stable.

We will show that solution (2.1) of system (1.1) is uniformly attractive.
Taking inequality (2.5) into account, we will establish that, to solve the limit system (1.5) for all t ≥ 0, the inequality |x∗

1(t)| = |x∗
2(t)| = m.

And, because |·| is a spherical vector norm, we can see from the latter equation that for all t ≥ 0 the following relation holds

Thus, for solutions of limit system (1.5), the equation ẋ∗
1(t) = 0 is satisfied for all t ≥ 0. Also, as the matrix B∗(t, x1) is non-singular, the

latter equation is only possible if ẋ∗
1(t) 0 for all t ≥ 0, i.e. the zero solution (2.1) of system (1.1) is uniformly attractive.

Theorem 3. For exponential stability of the zero solution (2.1) of system (1.1) it is sufficient for the following conditions to be satisfied

Proof. We will choose a Lyapunov function in the form of the rectangular vector norm V = {|x1|; k|x2|}. We will then have V̇ ≤ M(ε(t))V .
From the condition of the theorem it follows that there is an instant of time t1 > t0 such that

From this we obtain the statement of the theorem.

Theorem 4. For exponential stability of the zero solution (2.1) of system (1.1) it is sufficient for the following conditions to be satisfied

The proof is similar to the proof of Theorem 3 if the Lyapunov function is adopted in the form of the octahedral vector norm V = |x1| + |x2|.
Theorems 3 and 4 were proved using well-known results.8

3. The stability of a non-conservative system with two degrees of freedom taking parametric perturbations into account

Let us consider the problem of the asymptotic stability of the zero solution of the system6

(3.1)

where A1 > 0 and A2 > 0 are generalized coefficients of inertia, −b1ẋ and −b2ẏ are dissipative forces, −Hẏ and Hẋ are gyroscopic forces, H is
a parameter, −c1x and −c2y are potential forces, −py and px are forces of radial correction and X and Y are terms containing x, y, ẋ, ẏ to a
power higher than 1.

We will assume that system (3.1) is subject to parametric perturbations, on account of which the proportionality factors of the dissipative
and potential forces change with time. We will also assume that bi = bi(t, x, y, ẋ, ẏ) and ci = ci(t, x, y, ẋ, ẏ) are continuous functions satisfying
the conditions

In system (3.1), we will replace the variables
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and introduce the notation

Then, in the new variables, system (3.1) will take the form

(3.2)

We will define the matrices

and adopt the number c = p/H. Calculating the corresponding norms, according to Theorem 2 we will write the conditions of uniform
asymptotic stability of the zero solution x = y = ẋ = ẏ = 0 of system (3.1) in the form

(3.3)

In the case where

conditions (3.3) acquire the more compact form

Example 1. The Problem of the stable functioning of a vertical gyroscope with radial correction. The equations of motion of the axis of a
vertical gyroscope have the form6

(3.4)

where A is the equatorial moment of inertia of the gyroscope, b is the coefficient of the resistance forces, H is the angular momentum, k is
the slope of the characteristic curve of the torque sensors, and X1 and X2 are non-linear functions of ˛, ˇ, ˙̨ and ˙̌ .

We will assume that b = b(t, ˛, ˇ, ˙̨ , ˙̌ ) is a certain constrained, uniformly continuous function, where

Then, conditions (3.3) of uniform asymptotic stability of the zero solution ˛ = ˇ = ˙̨ = ˙̌ = 0 reduce to the inequality

which, if b = constant > 0, is identical with the Routh–Hurwitz condition.
We will now consider the problem of the stability of the zero solution of the system

(3.5)

The problem of stabilizing the transverse motion of a rotor rotating in an aerodynamic medium by fitting an annular damper7, reduces to
this system.

In system (3.5) we will take into account the action of parametric disturbances and assume that the coefficients b, c, and p are functions
of t, x, y, ẋ, ẏ and vary with time within certain finite limits:
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Then, applying Theorem 2, we obtain the following condition of uniform asymptotic stability of the zero solution x = y = ẋ = ẏ = 0 of
system (3.5)

4. Stabilization of the programmed motion of mechanical systems

Let us consider the problem of stabilizing the programmed motion q = q0(t) of a mechanical system with n degrees of freedom

(4.1)

where q ∈ Rn is the vector of generalized coordinates, q̇ is the vector of generalized velocities, H(t, q) is an n × n matrix, F(t, q, q̇) is an n × 1
vector with constrained uniformly continuous elements, u = ũ + u0(t) is the vector of control actions, ũ is the additional control action and
u0(t) is the open-loop control.

We will use x = q − q0(t) to denote the deviation of the true motion from the programmed motion and write the linearized equations in
deviations

(4.2)

where

while the vector with components Li is defined by the formula

We will assume that only the coordinates of the object are available for measurement, while the vector of the additional control action
is defined as a linear function of the coordinates:

where K is a certain constant matrix.
For the continuous function a: R+ → R we will introduce the notation

The following theorems concerning the stabilization of programmed motion will then hold.

Theorem 5. Suppose be constants k > 1 and d = const > 0 exist, such that

Then the control

(4.3)

will stabilize the programmed motion q0(t) of system (4.1) and the zero position of equilibrium x = ẋ = 0 of system (4.2) will be exponen-
tially stable.

Theorem 6. Let |·| be a spherical vector norm and

and let the conditions of the previous theorem also be satisfied for k = 1.

Then, the control (4.3) will stabilize the programmed motion q0(t) of system (4.1) and the zero position of equilibrium x = ẋ = 0 of
system (4.2) will be uniformly asymptotically stable.

Theorems 5 and 6 supplement well-known results9,10 on the stabilization of programmed motions of mechanical systems.
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Fig. 1.

Example 2. The problem of stabilizing the programmed motion of an inverted double pendulum. The controlled motion of an inverted
double pendulum (Fig. 1) is described by the equation11

(4.4)

where [11]

q = (q1, q2)′ is the vector of the angles between the vertical axis and the corresponding link of the pendulum, u = (u1, u2)′ is the vector of
control moments, a moment u1 being applied to the lower link and a moment u2 to the upper link, L1 is the length of the first link, mi is the
mass of a pendulum link, Ii is the moment of inertia of a link, li is the distance from the centre of gravity of a link to the point of support,
here i = 1 corresponds to the lower link and i = 2 to the upper link, J0 is the moment of inertia of the drive shaft, g is the acceleration due
to gravity and k is the coefficient of the moments of the resistance forces, linear with respect to the generalized forces arising during the
motion of the links.

Let the programmed trajectory have the form

and let the mechanical parameters of the pendulum be as follows:

We will apply Theorem 5, where |·| is a cubic vector norm.
Numerical calculations show that, for d = 3.5 and the matrix K = ||kij||, having elements k11 = k22 = −1.5 and k12 = k21 = 0 for s ≥ 0, the

following inequality holds

and consequently, with control (4.3), the programmed motion q0(t) of the pendulum is exponentially stabilized.

Example 3. The problem of stabilizing the programmed motion of a two-link manipulator on a mobile base. We will assume that a
two-link manipulator (Fig. 2) consisting of homogeneous hinged links with a load positioned in the grip of the second link moves in the
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Fig. 2.

horizontal plane on a base performing translational motion.12 We will write the kinetic energy of such a mechanical system

Here

m1 and m2 are the masses of the links, m3 is the mass of the load, l1 and l2 are the lengths of the links, q1 and q2 are the hinged angles of
the links, M0 is the mass of the base and x1(t), x2(t) are the coordinates of the mobile base. Then the equation of controlled motion of the
manipulator will take the form

(4.5)

where

q = (q1, q2)′ is the vector of the hinged angles of the links, u = (u1, u2)′ is the vector of controlling moments and k is the coefficient of the
moments of the resistance forces, which are linear in the generalized velocities.

As in the previous example, we will apply Theorem 5, where |·| is a cubic vector norm. Numerical calculations were carried out with the
following parameter values
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Let the programmed trajectory have the form

Then, if d = 1.21 and the matrix K = ||kij|| has the elements

control (4.3) ensures exponential stabilization of the programmed trajectory q0(t).
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